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DEVELOPMENT OF A MODEL FOR THE DESTRUCTION
PROCESS OF CRANKSHAFTS OF MARINE DIESEL ENGINES
TAKING INTO ACCOUNT THEIR STRESS-STRAIN STATE

Formulation of the problem in general form.

Crankshaft quality issues include mechanical damage (scoring, chip-
ping, scratches), geometric distortion (deformation, deflection, runout),
and accelerated wear (of journals, bearings, and bores), which often leads
to engine imbalance, increased noise and vibration, and ultimately, engine
failure. These can be caused by manufacturing defects or operational er-
rors, such as unscheduled oil changes, overheating, or excessive loads.
Fatigue failure is the most common cause of crankshaft failure, especially
in steel crankshafts, accounting for 70% of failures. This occurs due to
repeated stress cycles, even when the stress is below the material's yield
strength.

Cracks often form in high-stress areas of the crankshaft, such as the
journal-to-journal joint [1]. These cracks can start small but grow over
time, especially when the piston is at top dead center (TDC). As the en-
gine continues to operate, cyclic loads can cause cracks to propagate,
leading to complete failure. Excessive axial clearance in the crankshaft
assembly can also lead to axial movement during engine operation. This
movement increases stress concentration, which in turn can lead to cracks
and premature failure [3].

Crankshaft failure can be directly related to bearing issues, such as
improper bearing installation or worn bearings. If the bearing nuts are
loose or the clearance between the shaft and axle is too large, the crank-
shaft will experience uneven loading, leading to premature fatigue.

Considering the above, improving the quality of remanufactured die-
sel engine crankshafts, taking into account their stress-strain state, remains
a relevant problem.

Setting the task.

1. Develop a flat model of a crankshaft crank.

2. Consider the stress-strain state of a reconditioned large-size crank-
shaft subjected to alternating loads.
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3. Develop a model suitable for analyzing the failure process of
crankshafts of low-power marine diesel engines.

4. Develop the force interaction between the cutting tool and the
workpiece.

Analysis of recent research and publications.

An analysis of literary sources reveals a shortage of domestic techno-
logical support for the restoration and repair of large diesel engine crank-
shafts. Similar technologies exist globally, with the Gleason process, a
common example of which is the application of metal coatings under a
flux layer using two different wires [2]. The need for technological sup-
port for the restoration of domestic large-sized crankshafts underlies the
relevance of this study.

Crankshaft analysis includes diagnostics for defects, such as wear,
scratches, scoring, and runout, using magnetic particle and ultrasonic test-
ing [4]. Compliance with technical requirements is also assessed, such as
checking journal geometry (ovality, taper), and analyzing the causes of
wear for subsequent shaft restoration using grinding or thread and keyway
restoration methods.

Presentation of the main research material.

To analyze potential defects and predict crankshaft failure locations, it
is necessary to examine the stress-strain state of a reconditioned large
crankshaft subjected to alternating loads [5]. Most frequently, fatigue fail-
ure occurs along the cheek in the overlap zone of the connecting rod and
main journals (Fig. 1), which for low-power marine engines is 27.5 mm at
the nominal journal size.

When regrinding the main and connecting rod journals to the final re-
pair size, the overlap is reduced by 2 mm (7.2%). Calculations show that
the bending stress level increases by an average of 8% [8].

Figure 1 - Form of fatigue failure of the crankshaft along the cheek
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The size of the load-bearing cross-section decreases significantly dur-
ing operation due to the propagation of fatigue cracks from the origins (in
this case, the fillets), as shown in Figure 1.

To analyze the force interaction between the crank and main journals
in the overlap zone, a flat model was proposed, shown in Figure 2.

Here, Z is the resultant force transmitted from the connecting rods; Za
and Zg are the support reactions.

For simplicity, we consider only the right-hand side of the model,
where |, is the web thickness; I, is the main journal length; and p is the
journal overlap. In the overlap zone, the solid metal is replaced by a fixed
rod system consisting of rods 2-1, 2-4, and 3-4.

The rods themselves have hinge joints at the corresponding nodes and
can only experience axial loads in the form of tensile or compressive forc-
es. If we cut the rod system with line 1-1 and examine the right part (Fig.
3), we can determine the forces in the rods themselves.
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In formulas (1)-(3), Ri; is the force transmitted by the rod, i -is the
node to which the force is transmitted by the rod, and j -is the node from
which this force is transmitted.

The top rod 2-1 will be compressed, while the other two — 2-4 and 3-4
— will be stretched. Taking the overlap between the 4 main and crankpin
journals of the engine as an example, 27 mm (including the over-chamfer
flanges), 36 mm, and p = 27.5 mm, we obtain R,; = 1.64 Zb; Ry, = 1.40
Zb; Ra4 = 0.66 Zb. It follows that the greatest tensile force is in rod 2-4
and is accompanied by a tensile force in rod 3-4, which constitutes 47% of
the load in 2-4. Although the force in rod 2-1 exceeds the load in 2-4 by
17.1%, it is compressive and therefore we think it is not responsible for
the failure of the component, and the hazardous section corresponds to the
location of rod 2-4, which is clearly visible in the practical example (Fig.
1). Next, the geometry of the hazardous section was considered, with rod
2-4 serving as a model.

To develop a model suitable for analyzing the fracture process, a neck
overlap diagram was considered (Fig. 4,a). Based on this, for the neck
overlap value p, we have

szK+Rw—r ) (4)
where R, is the radius of the main journal; R, is the radius of the connect-
ing rod journal; r is the radius of the crank.

For an engine crankshaft with a crank radius of 60 mm, a nominal di-
ameter of the main journal of 95 mm and a connecting rod journal of 80
mm, the value of p corresponds to 27.5 mm, which was indicated above
[6]. Next, the problem consisted of determining the coordinates of points
B and C (the intersection points of the contours of the main and connect-
ing rod journals) relative to the X and Y axes. Based on the rules of ana-
Iytical geometry, relying on the equation of a circle, we obtain the coordi-
nates of the points of the circumferences of the main and connecting rod
journals [7]. Solving the system of equations for the above dimensions,
we obtain the coordinates of the intersection points of the circumferences
of the connecting rod and main journals (in mm) relative to the center of
the main circle: B(-31,594; 35,469); C(31,594; 35,469). From here we
calculate all the missing parameters of the circuit in Figure 4,a. Then:

a=2-|x|=63,188(mm), ()

Ry s =
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where a -is the chord of the overlap of the necks; x -is the value of the
abscissa of point B or C.

To determine the main journal segment arrow hy and the crank pin
segment arrow h, with the ordinate of the intersection points y, we use the
following relationships:

h,= Ry —y=12,031 (mm) ; (6)
h.= R, — (r —y)=15,469 (mm) . (7)

To determine the length of the overlap arc corresponding to the main
journal Ir and the length of the overlap arc corresponding to the crankpin
I« we use the values from (5-7) and the formula:

l, = /az +%-hk2 =69,027(mm); (8)
|, =2 +%.h; =72,587(mm) (©)

It was assumed that these arcs represent the boundaries of the hazard-
ous section along the guide line of the cylindrical surfaces of the journals.
The length of the hazardous section | can be determined from Fig. 2 using

the formula:
I =I5 + p? =38,539(mm) (10)

The numerical value here is defined for the web located between the
4th main journal and 4-th connecting rod journal of the engine crankshaft,
taking into account the over-chamber flanges.

Thus, with some assumptions, the hazardous section can be represent-
ed as a flat model to which a tensile force is applied (Fig. 4, b).

The model is an isosceles trapezoid, the upper and lower bases of
which are equal to the lengths of the support arcs I, and I, calculated
using formulas (8) and (9), and the height is equal to the value I, calculat-
ed using formula (10). The upper base has a distributed constraint along
the Y-axis and is immobile along the X-axis. The lower base is loaded
with a distributed (we assume uniformly distributed) load g, directed
along the Y-axis, and the lower base is also immobile along the X-axis.
The absence of displacements along the X-axis simulates the effect on the
hazardous section of the remaining part of the jaw, including the counter-
weight, which is not subject to the loads under consideration [5].

When deriving an analytical description of the high-cycle fatigue
curve, we assume that the failure intensity o increases directly propor-
tionally to the actual amplitude of the acting stresses oy, that is,
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o2 :m:ao-af’ (11)

where dFp is the elementary small area of destruction for the number of
cycles dN; a -is the proportionality coefficient characterizing the change
in o per unit of stress amplitude g - do [do, -
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Figure 4 — a — diagram of the overlap of the crankshaft journals; b — a flat
model of the dangerous section and a diagram of its loading

This assumption can be explained by Hooke's law, according to
which, within the elastic limits, the deformation (leading to microplastic
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failure) is directly proportional to the magnitude of the applied stress.
Therefore, the dependence of o, 0n F,, taking these factors into account,
can be taken as the second assumption of linearity in the form

oy =0, +CF, (12)

e o,=0,—0c,; C — proportionality coefficient characterizing the

change in stress amplitude per unit area of destruction (c=do, /dF, ).

Size o, is used as a free term due to the fact that fatigue failures begin

to develop only under the condition 6,>c.;, that is, when the amplitude
exceeds the fatigue limit.

Taking into account dependence (12), differential equation (11) takes
the form

dF, ,
N ao, +ack,. (13)

Integration of the differential equation (13) under the initial conditions
F,= 0 at N = 0 allows us to obtain the dependence of the destruction area
F, on the number of cycles N, therefore, we can calculate the dependence
of the actual stress amplitude o, on the number of loading cycles and, as a
consequence, we can determine the total destruction area:

F=F,+F, =F,+F,(e™ —1)=F,¢™. (14)

When improving crankshaft design and justifying restoration meth-
ods, it is necessary to consider the characteristics of fatigue failure. This
primarily concerns the avoidance of cold straightening of shafts, which
reduces fatigue strength by 30% or more. A network of microcracks in the
die joint zone has a similar effect (by 20-40%). Roller knurling of fillets
increases fatigue strength by 15%.

The main criterion for analysis in this area is the correspondence be-
tween the failure mode of the actual object and the predicted failure mode
of the model. A crankshaft, welded under a layer of AN-348A flux using
1.6Np-30KhGSA wire, was ground (Fig. 5), and then operated under real
conditions until failure. The destruction occurred in two places: across the
fourth crank journal from the rear end of the part and in the area of the
adjacent cheek from the front flange of the shaft (Fig. 6).

The classic loading scheme for calculating crankshaft strength is
shown in Fig. 7. The calculated loads are the radial Z and tangential T
(acting on an arm equal to the crank radius r), which are the components
of the total forces. Accurately calculating the strength of a crankshaft is
practically impossible due to the complexity of its shape. The crankshaft
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is primarily calculated as a flat, two-support frame, one end of which rests
on a movable hinge, and the other on a fixed one. Axial loads are absent
in this case. A study of the causes of crankshaft failure shows that in most
cases they are a consequence of material fatigue. Elements of the study
are presented in Figs. 8 and 9.

The most dangerous sections of the crankshaft in this regard are those
where significant stress concentrations can occur [4]. It is a priori known
that the edges of the lubrication holes in the connecting rod and main
journals are the critical points, while in the webs, the areas where they
meet the journals are the critical points.

Practical experience in testing and operation shows that, in the ulti-
mate state, the crankshaft typically fails as a result of normal stresses
caused by bending loads in the crank plane.

Figure 5 - The fourth Figure 6 - The nature of the destruction of the
crankshaft journal before failure crankshaft journal as a result of its operation

Crankshafts exhibit the characteristic torsional failure pattern ex-
tremely rarely. Theoretically, the distribution of internal stresses in a
crankshaft can be described using grid or variational calculation methods.
The finite element method is a variational method [7].

Assumptions were made: first, a flat model was considered, with the
outlines of a projection of a fragment of a real crankshaft onto a plane
parallel to the crank plane; - secondly, due to the law:
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Figure 7 - Classic crankshaft design diagram
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where M is the magnitude of the bending moment, ZO0 is the reaction
of the support in the plane of the crank, is the distance from the support to
the middle of the crank journal, Pg; -is the centrifugal force of inertia from
the rotation of the counterweights, P. - is the centrifugal force of inertia
from the rotation of the crank, c- is the distance from the support to the
shaft cheek, we neglect components Py and P, conventionally assuming
that they balance each other;

Figure 8 - Macrostructure of a cheek  Figure 9 - Macrostructure of a transverse neck
fracture: Transition from the fatigue crack  fracture: fatigue crack development zone
development zone to the brittle fracture (50:1)
zone (50:1)
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- third, the load on the crank journal from the two connecting rods
was replaced by a uniformly distributed load and equated to unity. The
latter, within the limits of Hooke's law, does not lead to a change in the
ratio of the internal stresses, therefore their distribution pattern in the part
remains the same;

- fourth, given that the maximum load from the gas pressure is trans-
mitted through the connecting rod at a crankshaft rotation angle ¢ equal to
approximately 15° from the top dead center of the compression stroke,
practically the entire load P, due to the smallness of this angle, is applied
as a shear force to the crank journal, and the tangential component T is
very small, as is To. For the same reason, the incident My, and tail M)
torques were not considered.

Thus, a two-dimensional model was used (Fig. 10). Approximation
was performed using triangular elements. The finite element breakdown is
shown in Fig. 11. The diagram included 194 nodes, which was sufficient
for visualizing the results [10].

The stress state was assessed using the von Mises criterion o, for
which the general formula is:

O'e:\/%[(0'1_0'2)2‘*’(0'2_0'3)2*'(0'3_0'1)2} ' (16)
where a1, 0, u 03 — principal stresses, ordered in descending order. In
this particular two-dimensional case under consideration, o3 = 0.

The calculation results are shown in Fig. 11.

In Fig. 6 a characteristic S-shaped region extending across the crank
journal is visible on the right (from the rear end of the shaft). The location
of the stress region to the left of the crank journal (from the front end of
the shaft) is also close to the fracture profile shown in Fig. 6.

By reducing the resolution, it is possible to identify regions where
significant stresses will occur.

Identification of these areas is necessary for fatigue crack investiga-
tions during crankshaft inspection, both during operation and repair [9].
This yields highly satisfactory results, similar to those discussed above.

All this makes crankshaft failure amenable to prediction and simple
visualization. After the surfacing operation, mechanical surface treatment
with a cutting tool is necessary.

The force interaction between the cutting tool and the workpiece is
shown in Figure 11.

Support reactions when basing in the machine:

R,=P, —R;g, 17)
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Figure 10 - Loading diagram of the fourth crank model of the engine crankshaft

where Pz — tangential component of cutting force;
R, = lei"l , (18)
where |, is the distance from the left support to the cutting zone; | -is
the length of the workpiece.
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Figure 11 — Diagram of crankshaft loading of the tangential component of
the cutting force during mechanical processing



2025 — Ne 51 Cyonosi enepeemuyti yCmanosxu 149

Maximum bending moment Mp; from the tangential component of the
cutting force P:

M., =P, -1, .[1—'|—1] (19)
Maximum bending moment M, from unit force:
M,, :ll.[l—lllj. (20)

Maximum deflection deformation &; from the tangential component
of the cutting force:

1|1 2 I 1|1 2 I
S5, :E_J.[E.II.MPZ .§.|1.(1_T1H+E_J.[E.(|_|1).|\/|PZ .§.|l.(1_|_1ﬂ,

where E -is Young's modulus; J -is the moment of inertia of the section of
the part.

Conclusions and prospects for further research

1. Using the finite element method, two-dimensional physical and
mathematical models of the crank were developed to determine internal
stresses. The obtained calculation results confirmed the failure statistics of
the actual component in operation. A unique crank model in the form of a
rod system was also proposed, allowing for the calculation of the distribu-
tion of internal forces in the overlap zone of the connecting rod and main
journals.

2. The macrostructure of the fracture in the cheek at the transition
from the fatigue crack development zone to the brittle fracture zone and
the macrostructure of the transverse journal fracture were obtained, illus-
trating the fatigue crack development zone.
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