## 10.31653/smf49.2024.54-68

Кривий М.О.

Національний університет «Одеська морська академія»

# ВДОСКОНАЛЕННЯ КРИТЕРІЇВ ДЛЯ ВИЗНАЧЕННЯ РЕЖИМІВ РОБОТИ ПІДШИПНИКІВ КОВЗАННЯ СУДНОВОГО ПРОПУЛЬСИВНОГО КОМПЛЕКСУ

**Постановка проблеми в загальному вигляді.** На безаварійну роботу суднового пропульсивного комплексу суттєво впливають процеси, які відбуваються в підшипники ковзання суднових енергетичних установок (СЕУ). Для моніторингу і діагностики безаварійної роботи підшипників ковзання використовують різні критерії, які гуртуються на їх фізико-технічних параметрах. Тому розвиток таких критеріїв є складною теоретичною і важливою практичною проблемою.

Аналіз останніх досліджень і публікацій. Дослідженню процесів, які відбуваються в підшипниках ковзання, в тому числі, суднового пропульсивного комплексу присвячено багато робіт [1 - 22], в яких порушено різні аспекти вказаної проблеми. Зокрема, в роботах [1 - 7] викладенні теоретичні основи і математичні моделі, які описують роботу пар ковзання. В роботі [8] отримані чисельні розв'язки задачі про змішане змащення підшипника кормового гвинтового валу судна із урахуванням кавітації і прогину валу. В роботі [9] експериментально досліджено вплив тертя-ковзання при малих обертах чотирьох різних підшипників ковзання кормового валу гребного гвинта. В роботі [10] методами традиційної теорії гідродинамічного мащення досліджено поведінку масляного шару в парі ковзання, отримані залежності коефіцієнта навантаження і гідродинамічного тиску від ексцентриситету та радіального зазору. В статті [11] запропоновано підхід до моніторингу процесу мащення підшипника ковзання дизелів на основі контактного потенціалу поверхонь цапфи і втулки. В статті [12] розвивається підхід до розрахунку контактного тиску та зони контакту в парах ковзання суднових дизелів, який базується на фундаментальних розв'язках теорії пружності. В роботах [13-19] запропоновано підхід до визначення інтегральних характеристик і параметрів мастильного шару підшипників ковзання суднового пропульсивного комплексу із урахуванням неньютонівського характеру поведінки мастил. Зокрема, в роботах [13-16] визначений

розподіл питомого тиску і значення максимального тиску в мастильному шарі для неньютонівських мастил, в роботі [17] побудовані нові математичні моделі для визначення характерних кутів пари ковзання мастильного шару, таких як кутів початку і кінця робочої зони, кута максимального тиску, кута відхилення лінії центрів. В роботі [18] отримана нова зручна в застосуванні математична моделі безрозмірного коефіцієнту навантаження і запропоновано критерій існування мастильного шару в парі ковзання для неньютонівських мастил.

В роботах [5, 6] описаний критерій Зоммерфельда для визначення характеристик підшипника ковзання при яких напврідинне тертяковзання переходить в рідинне. Але значень числа Зоммерфельда, яке використовується в указаному критерії наведено мало і вони не охоплюють весь діапазон зміни параметрів підшипників ковзання суднового пропульсивного комплексу. Це суттєво ускладнює використання критерію Зомерфельда на практиці. Усуненню цього недоліку і присвячена дана робота.

**Постановка завдання.** Завданням даного дослідження є побудова ефективної і зручної в застосуванні математичної моделі для критерія Зомерфельда для визначення граничних режимів роботи підшипників ковзання суднового пропульсивного комплексу.

### Виклад основного матеріалу дослідження.

До моніторингу і прогнозу довговічності роботи підшипників ковзання, які працюють в режимах близьких до граничних, в першу чергу застосовують критерій *по максимальному навантаженні*. Оскільки цапфа (вал) виготовляються із більш міцних матеріалів, в якості міри міцності вибирається середнє питоме навантаження  $p_{sr}$ на втулку або на її антифрикційне покриття, яке не повинно перевищувати гранично можливого середнє значення [ $p_{sr}$ ]:

$$p_{sr} \le [p_{sr}], \tag{1}$$

де  $p_{sr} = \frac{P}{2R_1L}$  – середнє питоме навантаження,  $R_1$  і L відповідно його радіус і довжина цапфи. Значення  $[p_{sr}]$  визначається експериментально для різних матеріалів [5, 6].

Широке застосування в якості критерія отримав навантажувально-швидкісний фактор (параметр)  $pv_o$ , де  $v_0 \left[\frac{M}{c}\right]$  — швидкість ковзання (або колова швидкість цапфи). Цей параметр в деякій мірі визначає тепловиділення в парі ковзання, її зношування і можливість адгезійних пошкоджень. Під час обертанні цапфи робота сили тертя призводить до тепловиділення, інтенсивність якого q можна подати так

$$q = f \cdot p_{sr} v_0 \tag{2}$$

де f – коефіцієнт механічного тертя в парі ковзання. Якщо вважати коефіцієнт тертя сталим при напіврідинному і напівсухому тертіковзанні при усталених режимах роботи, то тепловиділення буде визначатись фактором  $p_{sr}v_o$ . Отже, можна вважати, що нормальний режим тертя-ковзання буде відбуватись при наступній умові

$$p_{sr}v_o \le [p_{sr}v_0] \tag{3}$$

[*p<sub>sr</sub>v*<sub>0</sub>] – допустиме значення *навантажувально-швидкісний фактору*, який визначається експериментально [5, 6] для матеріалів вкладиша (втулки).

При застосуванні наведених вище критеріїв відбувається також моніторинг швидкості обертання цапфи:

$$v_o \le [v_0] \tag{4}$$

Максимально допустимі значення [*v*<sub>0</sub>] визначаються також експериментально (див. наприклад [5, 6])

Більш надійними результати розрахунку працездатності підшипника ковзання можна отримати, якщо в критеріях (1), (3) використовувати замість середнього питомого навантаження  $p_{sr}$ , максимальне питоме значення  $p_{max}$ . Тоді критерії (1), (3) можна переписати так

$$p_{\max} \le [p_{\max}], \tag{5}$$

$$p_{\max} v_o \le [p_{\max} v_0] \tag{6}$$

Максимально допустимі значення  $[p_{max}]$ ,  $[p_{max}v_0]$  приймається на 40-50 % більшими відповідних значень  $[p_{sr}]$  і  $[p_{sr}v_0]$ .

Критерії (1), (3) – (6) широко використовуються на першому етапі моніторингу і перевірки надійності підшипників ковзання при режимах сухого, напівсухого і напіврідинного тертя-ковзання. Однак, при наявності масляного шару, тобто при рідинному тертіковзанні трибологічні процеси в парах ковзання носять інший характер, виникають гідродинамічні сили, які кардинально змінюють процеси зношування і впливають на довговічність роботи трибологічної системи. Тому моніторинг і критерії довговічності роботи підшипників ковзання носять інший характер, вони враховують конструктивні особливості підшипників ковзання і в'язкістні характеристики мастил.

Наявність мастильного шару при рідинному терті-ковзані, одночасно призводить до виникнення гідродинамічного спротиву обертанню цапфи, який обумовлений внутрішнім тертям між частинками рідни і спричинений її в'язкістю. Спротив руху цапфи, яка обертається із швидкістю  $\omega_0$ , буде чинити сила в'язкого гідродинамічного зсуву мастильного шару, яку в системі координат, пов'язаній із нормаллю і дотичною до цапфи, можна подати так:  $\vec{F}_T = (0; F_T)$ . Величина  $F_T = F_T(y)$  може змінюватись по товщині масляного шару ( $y \in [0; h]$ ,  $h = h(\varphi)$  – товщина масляного шару при куті  $\varphi$ ), і може бути подана через зсувні напруження  $\tau_{\varphi}(\varphi, y)$  в мастильному шарі:

Згідно закону Ньютона зсувне напруження в мастильному шарі  $\tau_{\varphi}$  при обертанні цапфи пропорційні градієнту швидкості по товщині мастильного шару  $\frac{dv}{dh}$ , і дорівнює  $\tau_{\varphi} = \mu \frac{dv}{dh}$  (7)

де  $\mu \left[ \frac{H \cdot c}{M^2} \right]$  – динамічна в'язкість мастил.

Величину сили тертя по всій робочій поверхні Ω підшипника знайдемо так

$$F_T = \int_{\Omega} \tau_{\varphi} d\Omega = \int_{\Omega} \mu \frac{dv}{dh} d\Omega \,. \tag{8}$$

Нехай *Р* – величини радіального навантаження підшипника ковзання, тоді величина:

$$f_T = \frac{F_T}{P} \tag{9}$$

називається коефіцієнтом гідродинамічного тертя підшипника ковзання.

Встановлено [3-6], що значення коефіцієнта гідродинамічного тертя  $f_T$  залежить від безрозмірної характеристики  $G_f$ , яку назива-

ють *числом Герсі*, яка є оберненою величиною до безрозмірного коефіцієнта навантаженості  $\Phi_{\rm p}$  [18], і яку можна подати так

$$G_f = \frac{1}{\Phi_{\rm P}} = \frac{\mu\omega_0}{p_{sr}\delta_0^2} \,, \tag{10}$$

 $\delta_0 = \frac{\delta}{R_1}$ ,  $\delta = (R_2 - R_1) -$  радіальний зазор пари ковзання,  $R_2 -$  радіус підшипника (вкладиша).

Залежність коефіцієнта гідродинамічного тертя від числа Герсі:  $f_T = f(G_f)$ , можна подати графічно [4 - 7], за допомогою діаграми Герсі-Штрібека (рис. 1). При малих значеннях числа Герсі  $G_f$ , тобто, згідно формули (10), при великих значеннях середнього питомого навантаження p<sub>sr</sub> і малих значеннях кутової швидкості обертання цапфи  $\omega_0$  і в'язкості мастил  $\mu$ , підшипник ковзання працює при напівсухому терті-ковзанні (зона І на рисунку 1). Коефіцієнт тертя в цьому випадку може досягати значень  $f_T \approx 0.2 \div 0.3$ . При збільшенні характеристики  $G_f$ , наприклад за рахунок збільшення швидкості  $\omega_0$ або в'язкості µ, в підшипнику ковзання виникає режим напіврідинного тертя (зона II на рисунку 1), при цьому коефіцієнт гідродинамічного тертя падає до значень  $f_T \approx 0.05 \div 0.10$ . При подальшому зростанню числа Герсі в кінці зони II, при критичному значені  $G_{f0}$ , коефіцієнт гідродинамічного тертя досягає мінімуму f<sub>10</sub>, який за звичай має значення:  $f_{T0} \approx 0.010 \div 0.001$ , при цьому підшипник перебуває в граничному режимі тертя-ковзання.



#### Рис. 1. Діаграма Герсі-Штрібека

Цей режим є найбільш ефективний при роботі суднового підшипника ковзання для нього характерний мінімальний рівень зношування і найменший рівень енергетичних втрат, але він є доволі нестійким і будь які не значні зміни робочих характеристик трибологічної пари можуть призвести до переходу в напіврідинний режим. При подальшому зростанні характеристики  $G_f > G_{f0}$ , підшипник ковзання переходить в рідинний режим роботи, коефіцієнт гідродинамічного тертя  $f_T$  починає при цьому дещо зростати, але при забезпеченні відповідного тепловідведення, цей режим є найбільш прийнятний для роботи підшипника ковзання. При цьому значення числа Герсі робочої зони пари ковзання (зона IV на рисунку 1), повинні задовольняти умові

$$G_{fr2} > G_f > G_{fr1}$$
. (11)

де  $G_{fr1} \approx 1.5G_{f0}$ ,  $G_{fr1} \approx 2G_{f0}$ . Умови (11) забезпечують достатній запас надійності збереження в підшипнику режиму рідинного тертя-ковзання при можливих коливаннях параметрів трибологічної пари.

Одним із основних питань при дослідженні роботи підшипника ковзання є визначення значень характеристик пари ковзання, при яких напврідинне тертя-ковзання переходить в рідинне і при яких діаграма тертя (рис. 1) досягає мінімуму. Ця проблема вирішується за допомогою *критерію Зоммерфельда*, згідно якому, при

 $\Phi_{\rm P} < [S_0]$ , тертя-ковзання рідинне.

 $\Phi_{\rm P} \ge [S_0]$ , тертя-ковзання напврідинне. (12)

Число [S<sub>0</sub>] – називається числом Зоммерфельда, яке пов'язане із критичним значенням числа Герсі так

$$[S_0] \simeq \frac{1}{G_{f0}}.$$
 (13)

Число Зоммерфельда [S<sub>0</sub>] визначається за допомогою технічних характеристик пари ковзання. Воно залежить від діаметра цапфи  $d = 2R_1$ , відношення  $l_d = \frac{L}{d}$  і відносного радіального зазору  $\delta_0$ . Отже, можна вважати що число Зомерфельда є функцією вказаних параметрів:

$$[S_0] = S_0(d, l_D, \delta_0).$$
(14)

Наразі, відомі значення числа  $[S_0]$  лише для невеликої комбінації вказаних параметрів (див. наприклад [5, 6]), ці значення наведенні в таблицях 1 – 3, і отримані для чистоти обробки поверхні вкладиша не менше  $\nabla 8$ . Труднощі застосування критерію Зомерфельда пов'язані, насамперед, із невеликою кількістю відомих значень числа  $[S_0]$ . Причому ці значення не охоплюють весь діапазон зміни технічних параметрів підшипників ковзання суднового пропульсивного комплексу, зокрема, корінних і шатунних підшипників СЕУ.

|                                                                        |               |      | <u> </u> |      |               |      | 0    |      |      |
|------------------------------------------------------------------------|---------------|------|----------|------|---------------|------|------|------|------|
| $l_d$                                                                  |               |      |          |      | d[ <i>м</i> ] |      |      |      |      |
|                                                                        | 0.03          | 0.04 | 0.05     | 0.06 | 0.07          | 0.08 | 0.10 | 0.15 | 0.2  |
| 0.6                                                                    | 0.28          | 0.35 | 0.42     | 0.52 | 0.60          | 0.7  | 1.0  | 2.0  | 3.0  |
| 0.8                                                                    | 0.44          | 0.54 | 0.67     | 0.80 | 0.95          | 1.1  | 1.5  | 2.7  | 4.0  |
| 1.0                                                                    | 0.58          | 0.72 | 0.85     | 1.0  | 1.2           | 1.4  | 1.9  | 3.4  | 5.0  |
| 1.2                                                                    | 0.70          | 0.80 | 1.0      | 1.2  | 1.4           | 1.65 | 2.2  | 3.9  | 6,0  |
| Таблиця 2. Значення [ $S_0$ ] при відносному зазорі $\delta_0 = 0.002$ |               |      |          |      |               |      |      |      |      |
| $l_d$                                                                  | d[M]          |      |          |      |               |      |      |      |      |
|                                                                        | 0.03          | 0.04 | 0.05     | 0.06 | 0.07          | 0.08 | 0.10 | 0.15 | 0.2  |
| 0.6                                                                    | 0.42          | 0.53 | 0.65     | 0.80 | 1.0           | 1.2  | 1.7  | 3.2  | 5.0  |
| 0.8                                                                    | 0.64          | 0.80 | 0.95     | 1.2  | 1.5           | 1.75 | 2.4  | 4.0  | 6.0  |
| 1.0                                                                    | 0.85          | 1.0  | 1.2      | 1.45 | 1.75          | 2.1  | 2.8  | 4.7  | 7.0  |
| 1.2                                                                    | 1.0           | 1.2  | 1.4      | 1.7  | 2.1           | 2.5  | 3.3  | 5.4  | 8.0  |
| Таблиця 3. Значення [ $S_0$ ] при відносному зазорі $\delta_0 = 0.003$ |               |      |          |      |               |      |      |      |      |
| $l_d$                                                                  | d[ <i>M</i> ] |      |          |      |               |      |      |      |      |
|                                                                        | 0.03          | 0.04 | 0.05     | 0.06 | 0.07          | 0.08 | 0.10 | 0.15 | 0.2  |
| 0.6                                                                    | 0.65          | 0.80 | 1.0      | 1.3  | 1.6           | 1.9  | 2.6  | 4.5  | 6.5  |
| 0.8                                                                    | 0.95          | 1.2  | 1.4      | 1.7  | 2.1           | 2.4  | 3.2  | 5.5  | 8.0  |
| 1.0                                                                    | 1.2           | 1.4  | 1.7      | 2.05 | 2.4           | 2.8  | 3.8  | 6.3  | 9.0  |
| 1.2                                                                    | 1.4           | 1.7  | 2.0      | 2.4  | 2.8           | 3.3  | 4.4  | 7.2  | 10.0 |

Таблиця 1. Значення [ $S_0$ ] при відносному зазорі  $\delta_0 = 0.001$ 

В таблицях 4 і 5 наведені технічні параметри шатунних і корінних підшипників ковзання деяких типів суднових двигунів. Ці параметри суттєво відрізняються від параметрів, для яких в таблицях 1-3 наведенні значення числа Зоммерфельда. Отже, виникає необхідність отримати нові значення числа Зоммерфельда для підшипників СЕУ.

| Двигун $d[M]$ $L[M]$ $l_d$ $\delta_0 \cdot 10^6$ 1         Sulzer 9RTA84C         0.80         0.31         0.3875         0.86 ÷ 1.           2         Sulzer 7RTA68         0.65         0.29         0.4462         1.11÷1.5           3         MAN B&W 6S50ME-B         0.65         0.22         0.3385         1.11÷1.5 |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1         Sulzer 9RTA84C         0.80         0.31         0.3875         0.86÷1.           2         Sulzer 7RTA68         0.65         0.29         0.4462         1.11÷1.           3         MAN B&W 6S50ME-B         0.65         0.22         0.3385         1.11÷1.                                                      | 3   |
| 2         Sulzer 7RTA68         0.65         0.29         0.4462         1.11÷1.5           3         MAN B&W 6S50ME-B         0.65         0.22         0.3385         1.11÷1.5                                                                                                                                                | .13 |
| 3 MAN B&W 6S50ME-B 0.65 0.22 0.3385 1.11 $\pm$ 1.2                                                                                                                                                                                                                                                                              | 54  |
| 5 WAR be w 0550WE-b 0.05 0.22 0.5505 1.11.1.                                                                                                                                                                                                                                                                                    | 39  |
| 4 MAN 12V48/60CR 0.45 0.18 0.4000 1.56÷2.0                                                                                                                                                                                                                                                                                      | 00  |
| 5 Wärtsilä 46F 0.42 0.22 0.5238 1.43÷1.9                                                                                                                                                                                                                                                                                        | 91  |
| 6 Wärtsilä 9L32 0.30 0.15 0.5000 1.67÷2.3                                                                                                                                                                                                                                                                                       | 33  |
| 7 MAN 8L27/38 0.24 0.16 0.6667 2.08÷2.9                                                                                                                                                                                                                                                                                         | 92  |
| 8 Yanmar 6EY22 0.20 0.12 0.6000 2.5÷3.4                                                                                                                                                                                                                                                                                         | 5   |
| 9 MTU 20V4000 0.19 0.11 0.5789 2.63÷3.0                                                                                                                                                                                                                                                                                         | 68  |
| 10         MTU 16V4000 M93         0.18         0.10         0.5556         2.78÷3.8                                                                                                                                                                                                                                            | 89  |

Таблиця 4. Технічні параметри шатунних підшипників ковзання СЕУ

Таблиця 5. Технічні параметри корінних підшипників ковзання СЕУ

|    | Двигун           | d[м] | L[M] | $l_d$  | $\delta_0 \cdot 10^3$ |
|----|------------------|------|------|--------|-----------------------|
| 1  | Sulzer 9RTA84C   | 0.84 | 0.34 | 0.4048 | 0.71÷0.95             |
| 2  | Sulzer 7RTA68    | 0.68 | 0.32 | 0.4706 | 0.88÷1.18             |
| 3  | MAN B&W 6S50ME-B | 0.72 | 0.28 | 0.3889 | 0.83÷1.11             |
| 4  | MAN 12V48/60CR   | 0.50 | 0.23 | 0.4600 | 1.00÷1.4              |
| 5  | Wärtsilä 46F     | 0.46 | 0.25 | 0.5435 | 1.09÷1.52             |
| 6  | Wärtsilä 9L32    | 0.32 | 0.18 | 0.5625 | 1.25÷1.88             |
| 7  | MAN 8L27/38      | 0.27 | 0.18 | 0.6667 | 1.48÷2.22             |
| 8  | Yanmar 6EY22     | 0.22 | 0.15 | 0.6818 | 1.82÷2.73             |
| 9  | MTU 20V4000      | 0.21 | 0.13 | 0.6190 | 1.91÷2.86             |
| 10 | MTU 16V4000 M93  | 0.21 | 0.13 | 0.5952 | 1.91÷2.86             |

Аналіз даних таблиць 1-3 показує, що із зростанням параметрів  $l_d$  і  $\delta_0$  відбувається зростання приблизно по лінійному закону значень числа  $[S_0]$ . Більш суттєвим зростання відбувається при збільшенні діаметра цапфи d і носить приблизно квадратичний характер. Ці міркування дозволяють розширити область визначення функції (14) на весь діапазон зміни її аргументів, і зробити застосовним критерій Зоммерфельда для суднових підшипників ковзання. Для цього, узагальнивши методи регресійного аналізу [20 - 24] на двовимірний випадок, отримаємо для функції (14) наступне подання

$$S_0(d, l_d, \delta_0) = ((2.575l_d + 13.845)\delta_0 \cdot 10^3 + 7.307l_d + 24.159)d^2 + ((3.13l_d + 4.073)\delta_0 \cdot 10^3 + 17.4l_d - 9.878)d.$$
(15)

Зауважимо, що нормоване значення коефіцієнту кореляції  $\tilde{R}^2$ (R – квадрат) отриманої математичної моделі (15) дорівнює 0.99, а сама кореляційна модель задовольняє усім необхідним умовам адекватності (див. наприклад [18 -23]). Для валідації отриманої математичної моделі критерію Зоммерфельда (15), порівняємо значення, отримані за допомогою сплайн-апроксимації даних таблиць 1-3 і значення, які отримані за формулою (15).

На рисунках 2-4 подані залежності відповідно функцій  $S_0(d, 0.6, \delta_0)$  -червона крива,  $S_0(d, 0.8, \delta_0)$  -синя крива,  $S_0(d, 1, \delta_0)$  зелена крива,  $S_0(d, 1, 2, \delta_0)$ -коралова крива від діаметра цапфи d. Точкові чорні лінії на усіх рисунках отримані за допомогою сплайнапроксимації табличних даних для тих же значень d і  $l_d$ . При цьому графіки на рисунку 2 отримані при  $\delta_0 = 0.001$ , на рисунку 3 при  $\delta_0 = 0.002$ , на рисунку 4 при  $\delta_0 = 0.003$ . Наведені результати демонструють відмінну адекватність отриманої математичної моделі (15) і практично повне співпадіння із табличними даними. На рисунку 5 наведені залежності числа Зоммерфельда [S<sub>0</sub>] від діаметра цапфи d для технічних характеристик підшипників ковзання СЕУ. Лінії червоного кольору відповідають значенню  $l_d = 0.4$ , лінії синього кольору значенню  $l_d = 0.5$ , лінії зеленого кольору значенню  $l_d = 0.6$  і лінії чорного кольору значенню  $l_d = 0.7$ . При цьому суцільні лінії отримані при  $\delta_0 = 0.0025$ , пунктирні лінії при  $\delta_0 = 0.0015$ .







На рисунку 6 на 3D графіках проілюстровано, як змінюється значення числа Зоммерфельда  $[S_0]$  в області зміни технічних параметрів підшипників ковзання СЕУ. Зокрема, поверхня червоного кольору є графіком функції  $[S_0] = S_0(d, l_D, 0.0007)$ , поверхня синього кольору графіком функції  $[S_0] = S_0(d, l_D, 0.0015)$ , поверхня зеленого

| кольору графіком функції $[S_0] = S_0(d, l_D, 0.002)$ і поверхня фіоле | то- |
|------------------------------------------------------------------------|-----|
| вого кольору графіком функції $[S_0] = S_0(d, l_D, 0.003)$ .           |     |

|    | Двигун           | $[S_0]$ шатунні ПК | $[S_0]$ корінні ПК |
|----|------------------|--------------------|--------------------|
| 1  | Sulzer 9RTA84C   | 26.778÷30.210      | 27.459÷31.028      |
| 2  | Sulzer 7RTA68    | 20.861÷25.425      | 21.083÷24.240      |
| 3  | MAN 12V48/60CR   | 18.948÷21.888      | 21.345÷24.541      |
| 4  | MAN B&W 6S50ME-B | 12.584÷14.988      | 12.457÷15.062      |
| 5  | Wärtsilä 46F     | 11.872÷14.291      | 12.152÷14.709      |
| 6  | Wärtsilä 9L32    | 7.239÷9.274        | 7.157÷9.302        |
| 7  | MAN 8L27/38      | 7.033÷9.012        | 6.726÷8.798        |
| 8  | Yanmar 6EY22     | 5.769÷7.574        | 5.703÷7.631        |
| 9  | MTU 20V4000      | 5.462÷7.221        | 5.154÷7.004        |
| 10 | MTU 16V4000 M93  | 5.157÷6.869        | 5.024÷6.857        |

Таблиця 6. Значення числа Зоммерфельда підшипників ковзання СЕУ



В таблиці 6 наведені можливі мінімальні і максимальні значення числа Зомерфельда для суднових двигунів із таблиці 4, 5 для шатунних і корінних підшипників ковзання

### Висновки і перспективи подальших досліджень

Отже, отримана нова зручна в застосуванні математична числа Зоммерфельда. Показано її адекватність і відмінну узгодженість із

існуючими базами даних значень числа  $[S_0]$ . Це дає можливість застосувати критерій Зомерфельда (12) до підшипників ковзання СЕУ. Зокрема, отримані можливі діапазони зміни числа  $[S_0]$  для шатунних і корінних підшипників ковзання основних типів суднових двигунів. Встановлено характер зміни числа Зоммерфельда в залежності від технічних параметрів підшипників ковзання, зокрема, із збільшенням діаметра цапфи d число  $[S_0]$  зростає, воно також зростає, але не так суттєво, при збільшенні відношення  $l_d$ . Таким чином, підшипники ковзання СЕУ із більшим діаметром цапфи є біль стійкими до виконання критерію Зомерфельда. Згідно рисунка 6, із збільшенням відносного радіального зазору  $\delta_0$  підшипника ковзання значення числа Зоммерфельда  $[S_0]$  також зростає, але це призводить до збільшення гідродинамічного тертя і підвищенню температури підшипника ковзання.

Так як в критерії Зомерфельда (12) присутній безрозмірний коефіцієнт навантаженості  $\Phi_p$ , виникає можливість врахувати вплив в'язкістних характеристик мастил [19] на режими роботи підшипника ковзання. Визначення вказаного впливу має важливе значення для вдосконалення моніторингу роботи підшипників ковзання суднового пропульсивного комплексу.

### Перелік використаних джерел

1. Spikes H. A. The half-wetted bearing. Part 1: Extended Reynolds equation. *Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology*. 2003. Vol. 217(1). P. 1-14.

2. Spikes H. A. The half-wetted bearing. Part 2: Potential application in low load contacts. *Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology*. 2003. Vol. 217(1). P. 15-26.

3. Deters L. Plain Bearings. In: Mang, T. (eds) Encyclopedia of Lubricants and Lubrication. Springer, Berlin, Heidelberg, 2014.

4. Harnoy A. Bearing Design in Machinery: Engineering Tribology and Lubrication (1st ed.), CRC Press, 2002.

5. Jones D.A. Electrohydrodynamic Lubrication Theory. *In: Taylor C. (ed) Engine tribology. Tribology Series.* 1993. Vol. 26. P. 15-50.

6. Szeri A. Fluid film lubrication, Cambridge Univ. Press, 1st Ed., Cambridge, U.K., 1998.

7. Hamrock, B.; Schmid, S.; Jacobson, B. Fundamentals of Fluid Film Lubrication, 2nd Ed., Marcel Dekker Inc, N.Y. 2004.

8. He T., Zou D., Lu X., Guo Y., Wang Z., Li W. Mixed-lubrication analysis of marine stern tube bearing considering bending deformation of stern shaft and cavitation. *Tribology International*. 2014. Vol. 73. P 108-116.

9. Litwin W. Marine Propeller Shaft Bearings under Low-Speed Conditions: Water vs. Oil Lubrication. *Tribology Transactions*. 2019. Vol. 62(5). P. 839–849.

10.Matsushita O., Tanaka M., Kobayashi M., Keogh P., Kank, H. Basics of plain bearings. In: Matsushita O., Tanaka M., Kobayashi M., Keogh P., Kanki H. (eds.) Vibrations of Rotating Machinery: Vol. 2. Advanced Rotodynamic: Applications of Analysis, Troubleshooting and Diagnosis, Springer Japan, Tokyo, 2019. P. 19–40.

11.Wan B., Yang J., Sun S. A Method for Monitoring Lubrication Conditions of Journal Bearings in a Diesel Engine Based on Contact Potential. *Appl. Sci.* 2020. Vol. 10. 5199.

12.Сагін С. В., Кривий М. О. Розрахунок контактного тиску та зони контакту в парах ковзання судових дизелів. *Автоматизація суднових технічних засобів: наук. -техн. зб.* Одеса: НУ "ОМА". 2021. № 27. Р. 84 – 92.

13.Сагін С. В., Кривий М. О. Визначення розподілу тиску в шарі неньютонівських мастил у суднових енергетичних установках. Вісник Одеського національного морського університету: Зб. Наук. праць. 2020. № 2(62). Р. 160-170.

14.Кривий М. О., Сагін С. В. Визначення впливу властивостей моторних мастил на розподіл тиску в парах ковзання суднових дизелів. *Суднові енергетичні установки*. 2021. № 43. Р. 18-23.

15.Кривий М. О., Сагін С. В. Математична модель мастильного шару в парах ковзання в суднових енергетичних установках. *Матеріали Міжнародної науково-технічної конференцій «Суднова* електроінженерія, електроніка і автоматика». Одеса, НУ «ОМА». 2019. Р. 144 - 148.

16.Кривий М. О., Сагін С. В. Визначення максимального контактного тиску в парах ковзання суднових енергетичних установок. *Матеріали XI міжнародної науково-технічної конференції «Суднова електроінженерія, електроніка і автоматика»*, Одеса: НУ «ОМА». 2021. Р. 79-83. 17.Кривий, М. О. Математичні моделі мастильного шару в парах ковзання суднових енергетичних установок. *Матеріали XIII міжна*родної науково-технічної конференції «Суднова електроінженерія, електроніка і автоматика». Одеса: НУ ОМА. 2023. Р. 118-121.

18.Кривий М. О. Визначення характерних кутів пар ковзання суднових енергетичних установок. *Суднові енергетичні установки: науково-технічний збірник*. Одеса: НУ «ОМА». 2023. Vol. 47. P. 32-45.

19.Kryvyi O., Miyusov M. V., Kryvyi M. New mathematical models for the load factor of slip pairs in the ship propulsion system for non-Newtonian lubricants. *Pomorstvo*. 2024. Vol. 38(1). P. 114–125.

20.Kryvyi O., Miyusov M., Kryvyi M. Construction and Analysis of New Mathematical Models of the Operation of Ship Propellers in Different Maneuvering Modes. *Trans Nav, the International Journal on Marine Navigation and Safety of Sea Transportation.* 2023. Vol. 17 (1). P. 95-102.

21.Kryvyi O., Miyusov M. V., Kryvyi M. Analysis of Known and Construction of New Mathematical Models of Forces on a Ship's Rudder in an Unbounded Flow. Analysis. *Trans Nav, the International Journal on Marine Navigation and Safety of Sea Transportation*. 2023. Vol. 17(4). P. 831-839.

22.Kryvyi O. F., Miyusov M. V. Mathematical model of hydrodynamic characteristics on the ship's hull for any drift angles, *Advances in Marine Navigation and Safety of Sea Transportation. Taylor & Francis Group*, London, UK. 2019. P. 111-117.

23.Kryvyi O. F., Miyusov M. V. The Creation of Polynomial Models of Hydrodynamic Forces on the Hull of the Ship with the help of Multifactor Regression Analysis. 8 *International Maritime Science Conference*. *IMSC* Budva, Montenegro. 2019. P. 545-555.

24.Kryvyi O., Miyusov M. V. Construction and Analysis of Mathematical Models of Hydrodynamic Forces and Moment on the Ship's Hull Using Multivariate Regression Analysis. *Trans Nav, the International Journal on Marine Navigation and Safety of Sea Transportation.* 2021. Vol. 15(4). C. 853-864.