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ESTIMATION OF STIFFNESS AND DISPLACEMENTS BY THE
ANALYTICAL EXPRESS METHOD DURING THE OPERATION
OF "SLIDING SHAFT-BEARING" CONNECTIONS.

Formulation of the problem.

Of all, when calculating structures in which a cantilever beam is used
as an elastic element, it is not correct to solve this equation for the finite
section by successive approximation of the transcendental equation. The
exact solution of the differential equation leads to the transcendental equa-
tion in elliptic integrals of the 1st kind. From this equation, it is possible to
determine the angle of rotation of the final section 6k by the method of
successive approximations, that is, in fact, by selection. For practical pur-
poses, for example, when designing elastic elements of variable stiffness,
it is necessary to have an explicit formula for the dependence of vertical
displacement on the applied force. We differentiate the dependence of the
reduced vertical displacement of the beam’s end on the reduced load.
Then we will take the inverse value from it. As a result, we get a graph of
the reduced stiffness, which fits almost perfectly into the square parabola
y = 3 +*2, The internal energy of deformation of the previously unloaded
and undeformed cantilever beam was determined. In order to verify this
mathematical model, a comparison of the results of the nonlinear calcula-
tion with the results of the finite element calculations based on the tradi-
tional model and the one proposed in the work was performed. It was
established that formulas (1) - (4) can be used when the displacement of
the rod element does not exceed 80% of its length, which is a very signifi-
cant geometric nonlinearity. The size of the stiffness matrix in the finite
element method (FEM) is determined by the degree of discretization of
the system. In practical tasks, the number of elements in the stiffness ma-
trix is calculated by hundreds of thousands or millions. It is always a high-
ly sparse matrix with a large number of zero elements.

Purpose of the study. The method of expert assessment of stiffhess
and displacement of the system is presented. For these purposes, an ana-
Iytical express method is proposed. The necessary dependencies are pre-
sented in a sufficient amount, which indicate the problem of geometrically
nonlinear bending, its connection with the basic differential equation of
the elastic line of the beam. As an example, a cantilever beam with a
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cross-section of constant length, loaded at the end with a bending force, is
considered. The equation of the elastic line’s shape is shown for it.

Presentation of research material

Estimation of stiffness and displacements by the analytical express
method during the operation of "Sliding shaft-bearing" connections

In design practice, the shipbuilder often has to face the need for an
approximate expert assessment of system stiffness and movements. For
these purposes, an analytical express method is proposed. Formulas that
show all dependencies in an explicit form are obtained:

=3+9°; )
\/_ arcty — \/_ (2)
o
f arctg }LZ (4)

where @ = FL? /(EJ) — reduced force, or force coefficient of the form;

V = v/ L - reduced displacement, or geometric form factor;

Ko = KL3 /(EJ) - reduced stiffness, or form stiffness factor.

The problem of geometrically nonlinear bending is also called the
problem of large deflections or large displacements of beam cross sections
in the literature.

Geometrically nonlinear bending is subject to the basic differential
equation of an elastic line:

e199 (5)
ds
where EJ is the bending stiffness of the beam; M - external bending
moment load in this section; s is a coordinate measured along the elastic
beam lines; ¢ - angle of rotation of the section. At the same time,

curvature 4o

ds
o . d’v
cannot be replaced by the second derivative of the deflection —,
: ; dx
as in the linear case.
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The basic relationship connecting the curvature with the bending
moment was first obtained by Jacob Bernoulli. Then this task was dealt
with by L. Euler and J. L. Lagrange, who considered a cantilever beam
with a load on the free end [1 - 3].

Consider a cantilever beam with a cross-section of constant length,
loaded at the end with a bending force (Fig. 1).

The equation of the shape of the elastic line for a cantilever beam
loaded at the end with a bending force, with linear elasticity of the
material and high tensile stiffness, has the form

do_F (% —X)
ds  EJ
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Fig. 1. Bending of the cantilever beam

For a cantilever beam with a cross-section of constant length, loaded
at the end by a bending force, equation (5) is written as follows:

F(x —X
R ©)
ds EJ
where X is the horizontal coordinate of the current section; Xk -
horizontal coordinate of the final section; F - applied load.

For a finite cross section, this equation is solved by successive ap-
proximation of the transcendental equation

7l
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\J 2 k2

most cases, this formula is linearized [40 - 42], considering

where
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do d*v.
—_ :_2’ Xk =
ds ds
where L is the length of the beam, v is the vertical displacement of the
Section.

However, there are a number of tasks (primarily when calculating
structures in which a cantilever beam is used as an elastic element) where
this assumption is unacceptable.

The exact solution of the differential equation (6) leads to the
transcendental equation in elliptic integrals of the 1st kind (7). From this
equation, it is possible to determine the angle of rotation of the final
section 6k by the method of successive approximations, i.e., in fact, by
selection. The vertical and horizontal movement of the end of the beam
are determined by formulas:

v y4EJ =2
Yk _q_ T j J1-KZsin?tdt:
4

L (8)

L
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For practical purposes, for example, when designing elastic elements
of variable stiffness, it is necessary to have an explicit formula for the
dependence of vertical displacement on the applied force.

Let's write Hooke's law in differential form:

K « dvi = dF,

where dvi - load increment and displacement of the end of the rod,
respectively, K is the coefficient of proportionality between these values
(stiffness), depending, generally speaking, on the shape of the rod.

If the dependence of the rod’s stiffness on the shape is expressed in
terms of displacement, formula (10) will be written

K (vk) dv =dF
or
dF
K(v,)=—, 11
(W)=g, )

and if in the form of a function of an external force, then

K(F)=1/SE. (12)
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Let's rewrite Hooke's law in dimensionless quantities. Then

K,dV = da. (13)
:F_|—2 - reduced force, or force coefficient of the form
EJ
v =Y -reduced displacement, or geometric form factor;
L

KL _reduced stiffness, or form stiffness factor.

R =N
For the linear case, given the relation

FL®
-, 14
VLo =255 (14)

a stiffer form factor can be written as:

EJ 3EI-L

3 3
K,=2-1L, I _3 (15)
\"

We numerically differentiate the dependence of the reduced vertical
displacement of the end of the beam on the reduced load. Then, in
accordance with expression (12), we will take the reciprocal of it. The
resulting reduced stiffness graph is shown in Fig. 1. It is easy to see that it

fits almost perfectly into the square a parabola y = 3 + x2.
Suppose that the value

Ky=3+@®*(16

is a solution to equation (13).
Then, integrating it, we get the total displacement:

% do 1

) D,
V,-V,= | ——=-"+- arctg—z—arctg—l}
S R «E[ NN

(17)
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Fig. 1. The stiffness of the cantilever beam is given

For a pre-loaded and undeformed rod

V= arctg

J’ Nk (18)

The results of calculations according to formula (18) and their
comparison with the values obtained according to formula (9) are given in
the table. 1.

The calculation error by formula (18) in relation to the exact solution
(9) does not exceed 0.4%.
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Table 1. Comparative analysis of calculation methods

\Y,
® according to the formula (9) |according to the formula (18)
0.5 0.162 0.1623
1 0.302 0.3023
2 0.494 0.4948
3 0.603 0.6046
4 0.670 0.6710
5 0.714 0.7144
6 0.744 0.7446
7 0.767 0.7669
8 0.785 0.7838
9 0.799 0.7971
10 0.811 0.8079

Using the formulas obtained above, we determine the internal energy
of deformation of a previously unloaded and undeformed cantilever beam.
In a conservative system

\ EJ Vv
U=A=|Fdv, =— |@dV. 19
frou -] 8
Substituting (16) into (13), we write

_do__do
K, 3+&°

u="- T PdD__ 1ﬂ[|n(3+q§2)—|n3]=%%ln(u%zj. (20)
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Expressing from (18) and substituting it into (20), we obtain an expression
for the strain energy due to displacement:

U:E—In(l+tg Jav). ()

strain energy calculated by this formula, for example, at V = 0.8, turns out
to be 76% more than the linear formula gives.

Returning from the given values to the original values, we will rewrite
formulas (6) - (8) and (20) - (21) for them:

2 2
3B FL_ L
L EJ EJ
v, = arctgF—Lz-
SN ) J3EY’
1EJ = 1EJ Y/
U==—"In|1+ In| 1+tg%/3—= 22
2L(3E2Jj2L(g\/_j (22)

Thus, formulas (16) - (22) give all dependencies in an explicit form.
However, these formulas have their own scope. This is indicated by the
fact that the geometric coefficient of the form V as the load approaches
infinity ® —oo converges to the value

1 Vs
= — =—=~r .

Voo \Earctg N 0,907
and not to 1 as one would expect. Therefore, if the form’s force
coefficient exceeds 10, which corresponds to the transverse movement of
the end of the beam more than 80% of the length of the beam (V = 0.8), it
iS not recommended to use the obtained formulas.
In fig. 2 the graphs of reduced stiffness KF (solid line), internal strain
energy U (dotted line) and reduced load @ (dashed line) depending on the
geometric coefficient of the form V [1 - graphs of values according to
formulas (14) - (18); 2 - graphs of values calculated according to the usual
formulas of resistance of materials] are shown.

Formulas (16) - (22) are derived for the calculation scheme, the initial
state of which is a rectilinear cantilever beam, the geometric and force
coefficients of its shape are equal to zero. Now let's assume that a system
whose shape corresponds to the force coefficient @0 (and the geometric
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V0) is taken as the initial one, but at the same time there is no real load
(Fig. 3).
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Fig. 2. Comparison of linear and non-linear calculations
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Fig. 3. Pre-bent cantilever beam
It is obvious that formulas (16) - (22) will also be fulfilled in this case, but
they should take into account the initial conditions:

@ =31g[3V,;
FL?
@:E—J+@O. (23)

The formulas for the transition of system 3 from the F1 position to the F2
position will have the following form
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(24)

In order to verify this mathematical model, a comparison of the results
of nonlinear calculation according to formulas (1) - (4) with the results of
finite element calculations based on the traditional model and the one
proposed in the work was performed. It was established that formulas (1) -
(4) can be used when the displacement of the rod element does not exceed
80% of its length, which is a very significant geometric nonlinearity.

Conclusions

1. The size of the stiffness matrix in the finite element method (FEM)
is determined by the degree of discretization of the system. In practical
tasks, the number of elements in the stiffness matrix is calculated by
hundreds of thousands or millions. It is always a highly sparse matrix with
a large number of zero elements.

2. One significant problem arises when solving nonlinear problems
using the finite element method. If the stiffness matrix depends on the
movements of the object, then the solution obtained with the help of MCE
will be very different from the true one, and in some cases, it may even go
beyond the scope of the problem definition. Therefore, it is necessary to
apply an iterative approach, gradually increasing the external load from
zero to a given value and recalculating the stiffness matrix at each step.

3. The proposed mathematical model of the dependence of stiffhess,
energy intensity and displacement of the elastic-dissipative ship beam
system on the load and the analytical express method can be used at the
design stage for an approximate expert assessment of stiffness and
displacements, if the displacement of the rod element does not exceed
80% of its length.
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